Different Types of Air Rifle Ammunition are use for different uses.


For smaller caliber rifles you will want a pellet or bullet that can transmit as much energy as possible into the animal to inflict the maximum amount of damage.  Wadcutter, flat point, and hollow point ammo is best used for this purpose.  Round nose can be used as well on larger calibers shooting longer distances.  There is an energy delivered curve to calculate out the maximum amount damage.  Most people look at small caliber air rifles at the manufacturers max feet per second, but that is not the most important information.  Look at the chart below for real world numbers of energy being delivered from a 50 caliber air rifle.

Grain      Material                FPS       Energy (ft. lbs.)
180         Lead                     1100       484
200         Lead                     1055      495
250         Lead                     1000      555
275         Lead                     945        545
300         Lead                     930        576
330         Lead                     935        641
350         Lead                     875        595
550         Lead                     760        700

The slowest bullet at 550 grain delivers the most energy, but accuracy at longer ranges would definitely suffer.

When firearms used black powder, there was substantially no great difference between a large bore airgun and a firearm. Sure, firearm bullets travelled more than twice as fast as airgun bullets when they left the muzzle, but all that did was shorten the range at which airguns were effective. In those days, all a bullet did to an animal was penetrate and create a wound channel through which blood was lost. It was important, therefore, to hit a vital organ to dispatch the animal with certainty.

And animals did not fall over when hit with bullets in those days. They usually stood their ground for several minutes until blood loss took its toll. It was much like hunting with arrows, only more effective because the bullets penetrated deeper and also went much farther with accuracy. A bowman might take a deer at 50 yards if he was a good shot — a rifleman could take one out to 200 yards if he was so inclined.

Once hit, it did not matter what gun sent the bullet, as long as the penetration was adequate and the vital organs were hit. What I’m saying is that a 45-70 buffalo rifle bullet is no more effective on a deer or bison than the same lead bullet fired from a .458 air rifle that develops only 500 foot-pounds at the muzzle. True, the hunter can shoot farther with the buffalo rifle, but their bullets are equally effective as airgun bullets.

Hydrostatic shock
Hunting with firearms changed forever at the beginning of the 20th century. Savage’s 250/3000 (also called the .250 Savage), created in 1915, was the first commercial bullet to leave the muzzle at 3,000 f.p.s. That was an 87-grain .257-caliber bullet. When that happened, the .25-caliber centerfire rifle went from being adequate for squirrels through fox to taking deer at 250 yards with certainty. It changed everything, because the new high-velocity bullets produced hydrostatic shock in the game.

You have probably seen slow-motion videos of a high-velocity bullet expanding in ballistic gelatin. As the bullet impacts the soft substance, it transmits a large portion of its energy in the form of a shock wave that travels through the liquid inside the target. In animal tissue, this shock wave hits nerves and causes them to transmit disruptive signals to the brain that shut down the animal’s life support. For this reason, a 50-grain .22-caliber bullet that impacts a deer-sized animal at 2,500 f.p.s. can actually knock that animal down on the spot, while a 400-grain bullet from a .45-70 that impacts at 1,000 f.p.s. will slip right through and exit the animal, leaving less than a quarter of its energy behind. The slow-moving bullet has to connect with vitals to do its job, while the lighter high-velocity bullet gets a boost from the shock it creates. Hunters of old were aware of this and knew they had to hit certain places on each animal to have an effect. They never gave it a second thought. But once hydrostatic shock entered the equation, the game changed forever.

Now, don’t get confused and think that faster pellets can do the same thing! Airguns top out at less than 1,500 f.p.s., so they can never produce hydrostatic shock in game. You need centerfire rifle velocities for that (above 2,000 f.p.s.).

No airgun will ever get a bullet or pellet going fast enough to create hydrostatic shock. That is a fact of the physical world that we have to come to grips with. So, all airgun hunting, and especially big bore hunting, has to be done exactly as hunters did it in the 1870s. Shoot for the vitals and be prepared to wait for the bullet to do its job.

In this vein, we’re interested in the bullets that are shot by big bore airguns. What we need are 2 things — accuracy and penetration. Accuracy good enough to hit the vital areas on the game we’re hunting, and penetration adequate to go deep enough to pass through those vitals. Now — prepare to be shocked.

A 405-grain bullet from a Quackenbush .458 rifle will pass entirely through a 1,500-lb. American bison when it hits from the side. I say that because it’s been done — several times, in fact. I’ve seen several medium-sized animals (250-400 lbs.) hit with smaller big bore bullets that completely exited the animal. So, the thing you want to do is try to match the bullet to the intended target. A bullet that’s sized .458 is the same diameter regardless of whether it weighs 193 grains or 510 grains. The hole it leaves will be identical. But the depth of penetration won’t!

Showing 1–16 of 17 results